COMBINATORICA Bolyai Society – Springer-Verlag

AN UPPER BOUND FOR d-DIMENSIONAL DIFFERENCE SETS

YONUTZ V. STANCHESCU

Received March 27, 2000

Let s_d be the maximal positive number for which the inequality $|\mathbb{A} - \mathbb{A}| \ge s_d |\mathbb{A}| - t_d$ holds for every finite set \mathbb{A} of affine dimension dim $\mathbb{A} = d$. What can one say about s_d ? The exact value of s_d is known only for d = 1, 2 and 3. It is shown that $s_d \le 2d - 2 + \frac{1}{d-1}$, for every $d \ge 2$. This disproves a conjecture of Ruzsa. Some further related questions are posed and discussed.

1. Introduction

Let \mathbb{A} be a finite set of \mathbb{R}^d . Let $\mathbb{A} - \mathbb{A} = \{x - y : x, y \in \mathbb{A}\}$ denote the difference set of \mathbb{A} . The need for lower estimates for $|\mathbb{A} - \mathbb{A}|$ in terms of $|\mathbb{A}|$ has been raised by Uhrin in [6]. In general, nothing more than the obvious

$$|\mathbb{A} - \mathbb{A}| \ge 2|\mathbb{A}| - 1$$

can be asserted; this lower bound, which holds with equality if \mathbb{A} is an arithmetic progression, was used in [6] and [7] to prove results sharpening the classical theorem of Minkowski-Blichfeld in geometry of numbers.

Therefore, a natural problem consists of obtaining non-trivial estimates for $|\mathbb{A}-\mathbb{A}|$, taking into consideration additional information about the structure of \mathbb{A} . We introduce the following definition. Let s(d) be the maximal positive number for which there is t(d) such that the inequality

(2)
$$|\mathbb{A} - \mathbb{A}| \ge s(d)|\mathbb{A}| - t(d)$$

Mathematics Subject Classification (2000): 52C10, 05D05, 11P70, 11B75

holds for every finite set \mathbb{A} of affine dimension dim $\mathbb{A} = d$. It is known [2] that $|\mathbb{A} - \mathbb{A}| \ge (d+1)|\mathbb{A}| - \frac{1}{2}d(d+1)$, if dim $\mathbb{A} = d$. Therefore, one has for every d

$$(3) s(d) \ge d + 1.$$

In particular, if d=1, then $|\mathbb{A}-\mathbb{A}| \geq 2|\mathbb{A}|-1$ and if d=2, then $|\mathbb{A}-\mathbb{A}| \geq 3|\mathbb{A}|-3$. These two inequalities cannot be strengthened (see examples 1 and 2 in [4]). Consequently we get

(4)
$$s(1) = 2$$
 and $s(2) = 3$.

However, the lower bound (3) is not exact for d=3. We showed in [4] that for finite three-dimensional sets the "correct" lower bound is

$$|\mathbb{A} - \mathbb{A}| \ge 4.5|\mathbb{A}| - 9.$$

This inequality, which was conjectured earlier by Freiman, Heppes and Uhrin in [2] and by Ruzsa in [3], is tight (see example 3 in [4]). Therefore, we get

(6)
$$s(3) = 4.5$$
.

So far s(1), s(2) and s(3) are the only known values of s(d). What can one say about s(d) for $d \ge 4$? The lower bound (3), obtained by Freiman, Heppes and Uhrin, is probably not exact. Ruzsa conjectured in [3] that $s(d) = 2d - 2 + \frac{2}{d}$, for every $d \ge 4$.

The aim of this paper is to prove the following upper bound for s(d):

Theorem 1.1. For every integer $d \ge 2$ one has

(7)
$$s(d) \le 2d - 2 + \frac{1}{d-1} .$$

This readily disproves Ruzsa's conjecture. Moreover, in view of (4) and (6), it seems that the equality $s(d) = 2d - 2 + \frac{1}{d-1}$ is true for every $d \ge 2$. Thus, we suggest the following

Conjecture 1.2. For every finite set \mathbb{A} of affine dimension dim $\mathbb{A} = d \geq 2$, one has

(8)
$$|\mathbb{A} - \mathbb{A}| \ge (2d - 2 + \frac{1}{d - 1})|\mathbb{A}| - (2d^2 - 4d + 3).$$

Of course, in view of Theorem 1.1, if inequality (8) is true, then is best possible (see also equality (13) below).

In this paper we shall use the following notation. Let A and B be two subsets of \mathbb{R}^m . As usual their sum is defined by $A+B=\{a+b,a\in A,b\in B\}$, -A means the set $\{-x:x\in A\}$, A+A is called the sum set of A and

A-A=A+(-A) is the difference set of A. If X is a subset of \mathbb{R}^m and $a\in\mathbb{R}^m$, we write a+X for the set $\{a+x:x\in X\}$. If X is a finite set, we denote by |X| its cardinality. The affine dimension dim A of a set $A\subseteq\mathbb{R}^m$ is defined as the dimension of the smallest hyperplane containing A. We denote by $e_0=(0,0,\ldots,0),\ e_1=(1,0,\ldots,0),\ldots,e_m=(0,0,\ldots,1)$ the (m+1) vertices of the standard m-simplex $\mathbb{S}_m\subseteq\mathbb{R}^m$. A vector will be written in the form (x_1,\ldots,x_m) , where $x_i,\ 1\leq i\leq m$, are its coordinates with respect to the canonical basis $\{e_1,\ldots,e_m\}$.

2. The upper bound for s(d)

We begin with two simple observations.

(i) Let $\mathbb{S}_m = \{e_0, e_1, ..., e_m\}$ be a m-dimensional simplex in \mathbb{R}^m . Clearly $|\mathbb{S}_m| = m + 1$ and \mathbb{S}_m is a "generic" set: there is no nontrivial coincidence between sums and differences. Therefore, we have

(9)
$$|\mathbb{S}_m - \mathbb{S}_m| = |\mathbb{S}_m|^2 - |\mathbb{S}_m| + 1 = m^2 + m + 1,$$

(10)
$$|\mathbb{S}_m + \mathbb{S}_m| = (m+1)|\mathbb{S}_m| - \frac{1}{2}m(m+1) = \frac{1}{2}(m+1)(m+2).$$

(ii) We estimate $|X\pm X|$ for a set which consists of the union of k parallel sets of dimension m-1. Let B be a finite set included in the hyperplane $(x_m=0)$ and define $X\subseteq \mathbb{R}^m$ by $X=X_k=B\cup (B+e_m)\cup\ldots\cup (B+(k-1)e_m)$. We can write

$$X - X = (B - B) + \{te_m : -(k - 1) \le t \le k - 1, t \in \mathbb{Z}\},\$$

$$X + X = (B + B) + \{te_m : 0 \le t \le 2k - 2, t \in \mathbb{Z}\},\$$

and hence $|X \pm X| = (2k-1)|B \pm B|$.

Remark. Using (ii) with $B = \mathbb{S}_{m-1}$, we obtain a m-dimensional set

$$X = \mathbb{S}_{m-1} \cup (\mathbb{S}_{m-1} + e_m) \cup \ldots \cup (\mathbb{S}_{m-1} + (k-1)e_m),$$

which consists of m parallel arithmetic progressions with the same common difference e_m , having |X| = mk. Using (9) and (10) for \mathbb{S}_{m-1} , we get

(11)
$$|X + X| = (2k - 1)|\mathbb{S}_{m-1} + \mathbb{S}_{m-1}| = (m+1)|X| - \frac{1}{2}m(m+1),$$

$$(12) |X-X| = (2k-1)|\mathbb{S}_{m-1} - \mathbb{S}_{m-1}| = \left(2m-2+\frac{2}{m}\right)|X| - (m^2-m+1).$$

Inequality (11) shows that Freiman's lower bound for the sumset ([1], pp.24) $|\mathbb{C} + \mathbb{C}| \ge (m+1)|\mathbb{C}| - \frac{m(m+1)}{2}$, with dim $\mathbb{C} = m$, is best possible and

we obtained in [5] a complete description of m-dimensional sets having the smallest cardinality of the sumset. Moreover, inequality (12), with m=d, gives only a first estimate for s(d), namely $s(d) \leq 2d-2+\frac{2}{d}$. Nevertheless, we will improve it by using a symmetric set M lying on two parallel hyperplanes.

Proof. Let $d \ge 2$ be an integer. We construct for every positive integer k, a set $M = M_k \subseteq \mathbb{R}^d$ of affine dimension d, cardinality |M| = 2k(d-1) and

(13)
$$|M - M| = (2d - 2 + \frac{1}{d - 1})|M| - (2d^2 - 4d + 3).$$

Sending k to infinity and in view of the definition of s(d), we obtain (7).

Let $M=Y\cup (e_d-Y)$ where $Y=\mathbb{S}_{d-2}\cup (\mathbb{S}_{d-2}+e_{d-1})\cup\ldots\cup (\mathbb{S}_{d-2}+(k-1)e_{d-1})$. Note that M lies on two parallel hyperplanes $(x_d=0)$ and $(x_d=1)$, has the cardinality $|M|=2|Y|=2k|\mathbb{S}_{d-2}|=2k(d-1)$ and $\dim M=\dim Y+1=d$.

We have $M-M=(Y-Y)\cup((Y+Y)-e_d)\cup(e_d-(Y+Y))$ and these three components of M-M lie on different hyperplanes. Therefore, one has |M-M|=|Y-Y|+2|Y+Y|. In view of (ii) with $B=\mathbb{S}_{d-2}$, we get $|Y\pm Y|=(2k-1)|\mathbb{S}_{d-2}\pm\mathbb{S}_{d-2}|$. Using (9) and (10) with m=d-2 we get

$$|M - M| = |Y - Y| + 2|Y + Y|$$

$$= (2k - 1)|\mathbb{S}_{d-2} - \mathbb{S}_{d-2}| + 2(2k - 1)|\mathbb{S}_{d-2} + \mathbb{S}_{d-2}|$$

$$= (2k - 1)(d^2 - 3d + 3) + 2(2k - 1)\frac{d^2 - d}{2}$$

$$= (2k - 1)(2d^2 - 4d + 3)$$

$$= (2d - 2 + \frac{1}{d - 1})|M| - (2d^2 - 4d + 3).$$

The theorem is proved. A final observation: M consists of 2d-2 parallel arithmetic progressions with the same common difference. Indeed, we can write $M = T \cup (T+b) \cup ... \cup (T+(k-1)b)$, where $T = \mathbb{S}_{d-2} \cup (a-\mathbb{S}_{d-2})$, a does not lie in the hyperplane of \mathbb{S}_{d-2} and b does not lie in the hyperplane of T.

Acknowledgments. This paper was prepared during the author's stay in Bordeaux and was supported by the *Bourse Chateaubriand du Gouverne-*ment Français. It is a great pleasure to thank Professor J.-M. Deshouillers for kind hospitality and excellent working conditions. I am grateful to the referee for his careful reading of the manuscript; his suggestions helped me to improve the presentation.

References

- [1] Freiman, G. A.: Foundations of a Structural Theory of Set Addition, Translations of Mathematical Monographs, 37, Amer. Math. Soc., Providence, R.I., 1973.
- [2] FREIMAN, G. A., HEPPES, A., UHRIN, B.: A lower estimation for the cardinality of finite difference sets in Rⁿ, Coll. Math. Soc. J. Bolyai, Budapest, 51 (1989), 125–139.
- [3] RUZSA, I. Z.: Sums of sets in several dimensions, Combinatorica, 14(4) (1994), 485–490.
- [4] STANCHESCU, Y.: On finite difference sets, Acta Math. Hungar., 79(1-2) (1998), 123-138.
- [5] STANCHESCU, Y.: On the simplest inverse problem for sums of sets in several dimensions, Combinatorica, 18(1) (1998), 139–149.
- [6] Uhrin, B.: Some estimations useful in geometry of numbers, *Period. Math. Hungar.*, 11 (1980), 95–103.
- [7] UHRIN, B.: On a generalization of Minkowski's convex body theorem, J. Number Theory, 13 (1981), 192–209.

Yonutz V. Stanchescu

Université Victor Segalen Bordeaux, U.F.R. M.I.2S, 33076 Bordeaux, France

stanches@math.u-bordeaux.fr